5-1 Introduction – Average Rate of Change

Date

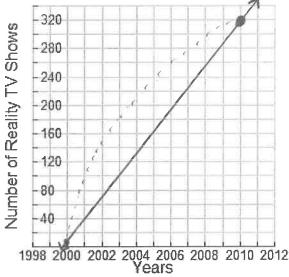
One of the most important topics in beginning Calculus is to understand average and instantaneous rate of change of a function. While these concepts might sound complicated, they are very similar to content you have learned in the past.

To analyze the average rate of change (A_{ROC}) , for a given time interval of a function f(x), use the following formula:

$$A_{ROC} = \frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{1}{x_2 - x_1}$$
that you are familiar with?

The A_{ROC} is the same as what formula that you are familiar with?

Use the below problems to help you further understand A_{ROC} .


When it comes to American median habits, the growth of blogs, emails, and music downloads has exceeded all expectations – though some old-media favorites have fared surprisingly well (data from *Newsweek* magazine, summer of 2010).

Based on the below data:

- 1.) Calculate A_{ROC} for each media category. Label each quantity with the correct units.
- 2.) Indicate if the category is increasing, decreasing, or has no change.

	iTUNES	DOWNLOADS		DAILY GOOGLE	SEARCHES		DAILY NEV	WSPAPERS		
	2000	2010		2000	2010		2000	2010		
	0	10 billion		100 million	2 billion		1,480	1,302		
400.0	(0 bill -	-0		2 billion - le	Ilma		= 1302	- 1480		
-	2010-200			= 2 billion - 100mill 2000 - 2000			= 1302-1480			
Prop. sed	10 bil	lion = I billion	orly sect	= 1900,000,0		nes/yr	$=\frac{-178}{10}$		rapers Y	
H		ETTERS MAILED 2010		REALITY TV	SHOWS 2010		CD SALES	REVENUE 2010		
	207.88 billion	175.67 billion		4	320		\$943 million	\$427.9 million		
= 175	10	7,88		= 320-4			-427.9-9	43		
= -3	2,21	-3.221 bill	1	_	1.6 Show	Ja	-515	[A-151	- No	
garitana.	٥	-3.221 bill leters/you		-310-1	1.6	4.1	= -5 5.	-51.51 pery	'ear	

3.) Graph the data for "Reality TV Shows" below. Graphically represent the A_{ROC} .

4.) Do you think this graphical representation of A_{ROC} represents the typical growth of Reality TV Shows?

No. They most likely have not grown at a constant rute the past 10 years.

5.) Explain what the A_{ROC} represents in terms of Reality TV Show growth.

It represents the average growth for those 10 years.

6.) On the grid above, draw a graphical representation that you think represents the actual growth of Reality TV Shows.

Hopefully their growth rate is decreasing...

Below is data for the average price of a movie ticket in North America over several years.

Year	1987	1991	1995	1999	2003	2007	2009
Price (\$)	3.91	4.21	4.35	5.06	6.03	6.88	7.50

7.) Find the average rate of change from 1995 to 2003. Label your answer with the correct units.

8.) Find the average rate of change from 1999 to 2007. Label your answer with the correct units.

9.) Find the average rate of change from 2003 to 2007. Label your answer with the correct units.

10.) Do you think the function that models this data is linear? Explain

Below is data for the time it takes a batter to run the first 15 feet to first base in a softball game.

Run to First Base			
× Time (seconds)	y Distance (feet)		
0.00	0.0		
0.68	3.0		
0.96	6.0		
1.18	9.0		
1.36	12.0		
1.52	15.0		

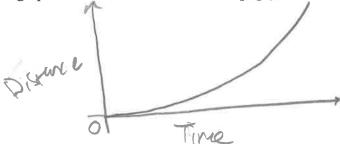
11.) Find A_{ROC} for the interval of 0.00 to 0.68. Label your answer with the correct units.

$$= \frac{3-0}{6.68-0} = \frac{34}{0.68} \approx 4.41 \text{ ft/sec}$$

12.) Find A_{ROC} for the interval of 0.68 to 0.96. Label your answer with the correct units.

13.) Find A_{ROC} for the interval of 1.36 to 1.52. Label your answer with the correct units.

14.) Do you think the function that models this data is linear? Explain.


No. The average rate of change is gotte different for each interval.

15.) What is happening with the A_{ROC} as time increases? What does that mean about the rate of increase of the function?

As time increases, the AROC also increases. The function is increasing at an

Increasing Tate.

16.) Sketch what you think the shape of a graph of this data will look like. Check your answer by graphing the data on your calculator (enter the data into a "Lists and Spreadsheet" page and then graph it on a "Data and Statistics" page).

17.) Describe the motion of the runner over time for the first 15 feet of the run towards first base.

They are gaining speed the longer they run.